
UCRL-CONF-235325

NIF ICCS Test Controller for
Automated & Manual Testing

J. S. Zielinski

October 5, 2007

International Conference on Accelerator and Large
Experimental Physics Control Systems
Knoxville, TN, United States
October 14, 2007 through October 20, 2007

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

NIF ICCS TEST CONTROLLER FOR AUTOMATED & MANUAL TESTING

J. Zielinski, LLNL, Livermore, CA 94551, U.S.A.

Abstract
The National Ignition Facility (NIF) Integrated

Computer Control System (ICCS) is a large (1.5
MSLOC), hierarchical, distributed system that controls all
aspects of the NIF laser [1]. The ICCS team delivers
software updates to the NIF facility throughout the year to
support shot operations and commissioning activities. In
2006, there were 48 releases of ICCS: 29 full releases, 19
patches. To ensure the quality of each delivery, thousands
of manual and automated tests are performed using the
ICCS TestController test infrastructure. The
TestController system provides test inventory
management, test planning, automated test execution and
manual test logging, release testing summaries and test
results search, all through a web browser interface.
Automated tests include command line based frameworks
server tests and Graphical User Interface (GUI) based
Java tests. Manual tests are presented as a checklist-style
web form to be completed by the tester. The results of all
tests, automated and manual, are kept in a common
repository that provides data to dynamic status reports.
As part of the 3-stage ICCS release testing strategy, the
TestController system helps plan, evaluate and track the
readiness of each release to the NIF facility.

INTRODUCTION
The ICCS team executes nearly 7,000 automated and

manual regression tests against the control system before
delivering a major release. Tests are executed during each
of the three test phases of the ICCS development lifecycle
[2, 3]:

• Developer integration testing
• Offline regression testing
• Online regression testing in the NIF

While manual tests are gradually being converted to

automated tests, the majority of testing is performed
manually by the ICCS development staff and Verification
and Validation team. A web-based test infrastructure, the
ICCS TestController, was created to help manage the
entire testing effort. This paper highlights the key
features of the TestController.

CORE COMPONENTS
Running on a central server, there are three core

components that form the structure of the TestController:
• Database
• Custom server daemon processes (written in PERL)

• Web server running PERL Common Gateway
Interface (CGI) scripts

The custom daemon processes running on the server

include the following five managers:

• Profile Manager – This is the interface for the

retrieval and update of user profiles. Each profile
contains the automated test scenarios executed by
that user in the past, the set of machines available
and a set of user preferences used by the web
interface.

• Execution Manager – Orchestrates automated test
execution scenarios from start to finish.

• Status Manager – The Status Manager satisfies all
queries for automated test execution status.

• Results Manager – This is the interface for the
storage and retrieval of all test results.

• Test Inventory Manager – Test inventories are
important for both manual and automated testing.
Inventories are updated and accessed through the
Test Inventory Manager.

To support the remote execution of automated tests, a

multi-platform daemon called the TestController Agent
runs on test lab machines in order to service requests from
the central TestController. The Agent will be discussed in
further detail later.

TEST INVENTORY MANAGEMENT
Test inventories can be viewed and updated through the

web interface. Though the inventories are stored as XML
files, they are passed through the user interface as Excel
spreadsheets to simplify editing. Users can download a
file from the current inventory, make changes to it, then
upload the modified file. The uploaded file is compared
to the current inventory and the differences are displayed
to the user. Once satisfied with the changes, the user
saves the new inventory.

The team’s automated Java tests are documented using
the javadoc mechanism. Instead of requiring the
developers of these tests to also update the inventory
through the Test Inventory Manager, the javadocs are
automatically parsed and converted to the XML format.

For all automated tests, the test inventories are used by
the web interface when a user is assembling an automated
test run. The user selects a test suite and then chooses any
subset of the available tests within that suite. The list of
suites and available tests come from the set of test
inventories.

The test inventories also serve as the basis for test
planning, as described in the following section.

__

This work performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.
#zielinski2@llnl.gov

TEST PLANNING
Each release of the ICCS software has a unique test

plan. The plan is updated by members of the
development and test teams so that the testing is
appropriate for the content of the particular release. Test
plans for small patch releases may include only a few
tests from the one or two areas that have been changed,
while plans for major releases will include thousands of
tests that cover the entire system. A release test plan has a
hierarchical structure as shown in Figure 1.

Adding or removing tests from the plan is done using
the test planning web interface. Once the release and test
area are selected, the available tests (from the test
inventory) are presented in a selectable tree structure.
Only the selected tests are included in the plan for that
release.

The release test plan is used to generate the manual test
checklists discussed in the following section as well as the
release testing summary reports discussed later.

MANUAL TEST RESULTS ENTRY
For manually executed tests, a checklist-style web form

is generated automatically from the test plan. From the
form, the user performing the tests sets the disposition for
each item and optionally logs any notes relevant to that
test. If the note text contains a reference to an issue from
our issue tracking system, a direct link to that issue is
dynamically generated and placed alongside the note in
the form. When the form is submitted, the results are

stored in the test results database along with the product
version, a current timestamp and the user’s name. When
a manual test checklist is retrieved, any tests that have
already been performed will show the current status as
well as the timestamp and user information.

AUTOMATED TEST EXECUTION
The TestController includes a complete framework and

web interface for the execution of automated tests. The
user assembles a test run task list by selecting which tests
to execute and the machines to execute on. The task list is
then submitted to the Execution Manager daemon. The
Execution Manager is responsible for coordinating the test
run, tracking the status while it’s running and ensuring the
results are deposited in the results database at the
conclusion of test execution.

TestController Agents
Tests are never executed on the server where the

Execution Manager and the other TestController
processes are running. Machines included in the test lab
execute a small daemon, the TestController Agent, to help
with remote test execution. The Agent processes requests
from the Execution Manager whenever a user has
included that machine in a task list submitted for
execution.

We have Agents that run on Windows and Solaris
machines. Each Agent has a local configuration file that
includes the installation information (location and
version) for the test suites and tools available on that
machine. If the Agent is asked to execute a test suite that
hasn’t been installed, it responds with an appropriate
error.

Also included in the Agent installation is an execution
module for each unique kind of test suite that it needs to
execute. Running an API-based framework test is much
different than running a GUI-based regression test, as is
interpreting the results to determine the status and log
information for each test that was run. The execution
modules take care of these differences so that they all
look the same to the Agent. When asked to run a
particular test suite, the Agent actually runs the execution
module that knows about that kind of suite. The
execution module is then responsible for preparing for the
test run, generating the command line and parsing the
results at the end. Once the run is complete, the results
are returned to the Execution Manager for storage.

Coordinated Multi-Machine Test Scenarios
Most test execution tasks require just one machine, but

some need more. For example, a test running against the
ICCS GUIs on one machine may require manipulation of
a hardware simulator on another in order to force an off-
normal condition. The Execution Manager supports this
by assigning roles to the machines specified in an
execution task. In this example, the machine running the
GUIs would be considered the client machine while the
machine running the simulator is a helper. The

Release: ICCS 6.0

Test Category: Formal Test – automated tests

Test Area: Power Conditioning
Suite: iccs.guitest.pcs
Plan: ICCS 6.0/ Formal Test – automated tests/
 Power Conditioning.plan

Test Area: Automatic Alignment
Suite: iccs.guitest.auto_align
Plan: ICCS 6.0/ Formal Test – automated tests/
 Automatic Alignment.plan

Test Category: Online Test – manual tests

Test Area: System Maintenance
Suite: iccs.manualtests.system_maint
Plan: ICCS 6.0/Online Test – manual tests/
 System Maintenance.plan

Figure 1: The hierarchical structure of a release test
plan. The plan contains any number of test categories,
each with any number of test areas.

information passed by the Execution Manager to the
Agents (and subsequently to the execution modules)
includes a list of all the participating machines and what
their roles are. With this, the test running on the client
machine can, in the middle of the test, contact the helper
on the other machine to make a request. Once the helper
has taken the requested action (manipulating the
simulator, in this case), it responds back to the client
machine and test execution continues.

Status Reporting
Status of all currently executing and previously

completed automated tests is available through the web
interface. While tests are executing, the Execution
Manager receives updates from the remote Agents on a
regular interval. These updates include a copy of the
current log file from the execution module(s) running the
tests. The live status information is immediately made
available to the Status Manager. This allows the user to
view the status of the run before it has completed. Users
can also request to be notified by email when a particular
testing task has finished. The email body includes an
abbreviated status of the task along with links to retrieve
more detailed information.

TEST RESULTS SEARCH
Results for both automated and manual tests are stored

in the test results database. The TestController web
interface provides a search page for assembling custom
queries using any combination of attributes (eg. test name,
release ID, test result, executing user, test machine, etc.).
Queries can be bookmarked for easy reuse.

The test results search mechanism also satisfies the
demanding requirements of the automated status reports
discussed in the following section.

REAL-TIME STATUS REPORTING
Every ICCS release has a Release Testing Summary

page that provides current status for every test area
identified in the release test plan (see Figure 2). The
report content is updated every time the page is visited.
At the top of the page is a high-level summary of the
status for each of our three test cycles: integration testing,
formal testing and online testing. The user is able to drill
down through the status summaries all the way to
individual test logs, if desired (to view test failures, for
example).

SUMMARY
For any large software project, managing the testing for

every product release is a difficult, time-consuming task.
For the NIF ICCS team, the ICCS TestController helps
plan, manage, execute and report status for the thousands
of tests performed throughout the software lifecycle. As
an integral part of a rigorous three stage testing approach,
it helps ensure that the software controlling the National
Ignition Facility is of excellent quality.

REFERENCES
[1] L. Lagin, et al., “Status of the National Ignition

Facility Integrated Computer Control System on the
Path to Ignition,” Fusion 2007, Quebec, July 2007.

[2] A. P. Ludwigsen, “Software Engineering Processes
Used to Develop the National Ignition Facility
Integrated Computer Control System,” ICALEPCS
2007, Knoxville, October 2007.

[3] D. Casavant, et al., “Testing and Quality Assurance
of the Control System During NIF Commissioning,”
ICALEPCS 2003, Gyeongju, October 2003.

Figure 2. This is a screenshot of a release testing summary. Clicking on one of the high level areas in this table reveals
more detailed information about what is being summarized. Subsequent drill-downs can lead all the way to the execution
logs of the tests being counted.

